Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications

نویسندگان

  • Tejal A. Desai
  • Derek Hansford
  • Mauro Ferrari
چکیده

The application of microfabrication technology to create precise separation and isolation membranes for biomedical applications is described. By utilizing fabrication techniques commonly employed in the microelectronics industry (MEMS), membranes can be fabricated with well-controlled and uniform pore sizes, allowing the optimization of membrane parameters for biomedical applications in cell immunoisolation and viral ®ltration. Using bulk and surface micromachining to create diffusion membranes, pore sizes down to 18 nm have been attained through deposition and subsequent etching of sacri®cial layers on silicon. Membranes were shown to be suf®ciently permeable to small biomolecules such as oxygen, glucose, and insulin, while excluding the passage of larger proteins such as immunoglobulin G (IgG). The semipermeability of microfabricated membranes, their biocompatibility, ease in sterilization, along with their thermal and chemical stability, may provide a signi®cant advantages for biomedical applications. Microfabrication technology may also be applied to other materials of interest for the development of highly controlled membranes. # 1999 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous anti-fouling silicon membranes for biosensor applications.

The ability to create biocompatible well-controlled membranes has been an area of great interest over the last few years, particularly for biosensor applications. The present study describes the fabrication and characterization of novel nanoporous micromachined membranes that exhibit selective permeability and low biofouling. Results indicate that such membranes can be fabricated with uniform p...

متن کامل

Nanoporous Platforms for Cellular Sensing and Delivery

In recent years, rapid advancements have been made in the biomedical applications of micro and nanotechnology. While the focus of such technology has primarily been on in vitro analytical and diagnostic tools, more recently, in vivo therapeutic and sensing applications have gained attention. This paper describes the creation of monodisperse nanoporous, biocompatible, silicon membranes as a plat...

متن کامل

Micromachined piezoelectric membranes with high nominal quality factors in newtonian liquid media: A Lamb's model validation at the microscale

2 ABSTRACT. Although extensively presented as one of the most promising silicon-based micromachined sensor adapted to real-time measurements in liquid media, the cantilevered structure still suffers from its quality factor (Q) dramatic dependence on the liquid viscosity thus lowering the measurement resolution. In this paper, micromachined piezoelectric membranes are introduced as a potential a...

متن کامل

Membranes to achieve immunoprotection of transplanted islets.

Transplantation of islet or beta cells is seen as the cure for type 1 diabetes since it allows physiological regulation of blood glucose levels without requiring any compliance from the patients. In order to circumvent the use of immunosuppressive drugs (and their side effects), semipermeable membranes have been developed to encapsulate and immunoprotect transplanted cells. This review presents...

متن کامل

Synthesis of Sulfonated Polystyrene/acrylate–ionic Liquid (Si-SPS/A–IL) Hybrid Membranes for Methanol Fuel Cells

In this paper, the silicon-containing sulfonated polystyrene/acrylate–ionic liquid (Si-SPS/A–IL)hybrid membranes was prepared to obtain the proton exchange membrane (PEM) materials withhigh methanol barrier and good selectivity. The Si-SPS/A–IL hybrid membranes characterized asthe function of IL to evaluate their potential as PEMs in direct methanol fuel cells (DMFCs).Fourdifferent Hybrid mater...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999